

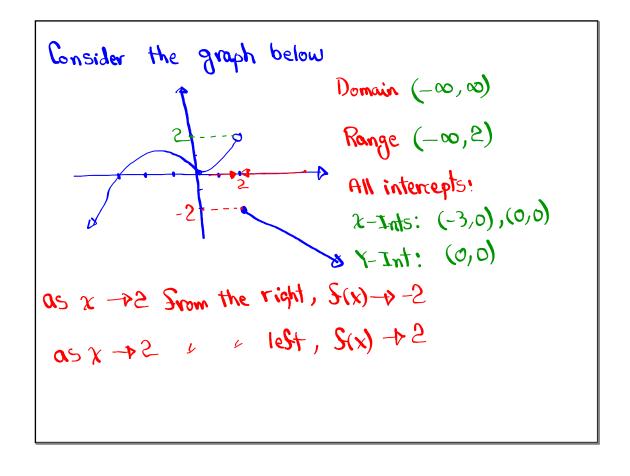
Consider the Sunction
$$S(x)=x^2-4x+4$$
 $S(0)=0^2-4(0)+4=4$
 $S(x)=2^2-4(2)+4=0$

Name of graph

Porobola

 $S(x)=x^2-4x+4$

Name of $S(x)=ax^2+bx+C$


Name of $S(x)=ax^2+bx+C$

Nome of $S(x)=ax^2+ax+C$

Nome of $S(x)=ax^2+bx+C$

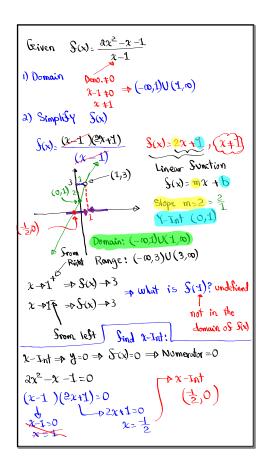
Nome of $S(x)=ax+C$

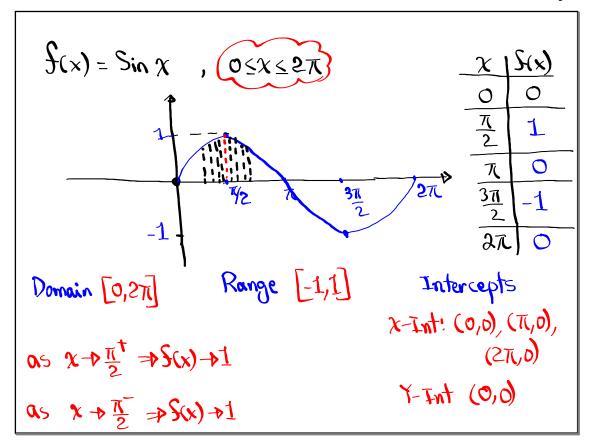
Nome of $S($

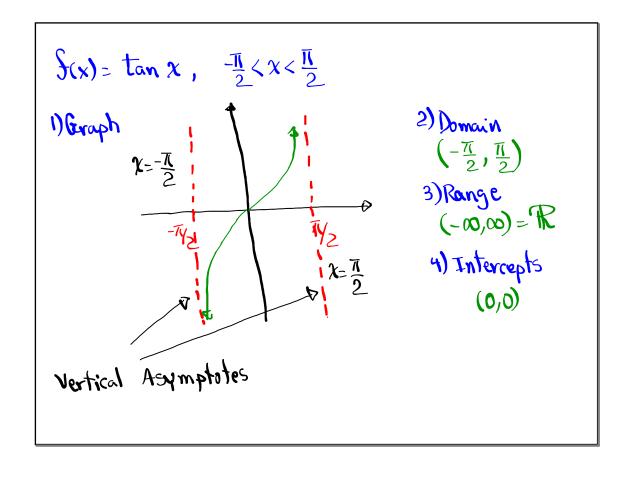
$$S(x) = \frac{1}{2}$$
Reciprocal Sunction

Domain $(-\infty,0)U(0,\infty)$

Range $(-\infty,0)U(0,\infty)$


All intercepts Mone


as $x \to 0$ Show right $\Rightarrow S(x) \Rightarrow \infty$


as $x \to 0$ (eft $\Rightarrow S(x) \to -\infty$)

as $x \to \infty \Rightarrow S(x) \to 0$

as $x \to \infty \Rightarrow S(x) \to 0$

Given
$$S(x) = ax^2 + C$$

Sind the difference quotient.

$$\frac{f(x+h) - f(x)}{h}$$

$$S(x+h) = a(x+h)^2 + C = a(x^2 + 2hx + h^2) + C$$

$$= ax^2 + 2ahx + ah^2 + C$$

$$S(x+h) - S(x) = ax^2 + 2ahx + ah^2 + C$$

$$= 2ahx + ah^2$$

$$\frac{f(x+h) - f(x)}{h} = 2ahx + ah^2 + \frac{h(2ax + ah)}{h}$$

$$\frac{f(x+h) - f(x)}{h} = 2ahx + ah^2$$

Given
$$f(x) = x^3$$
, f_{ind} the difference

quotient, then Simplify, and evaluate for $h=0$)

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^3}{h}$$

$$= \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$$

$$= \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$$

$$= \frac{x^3 + 3x^2h + 3xh^2 + hx^2 + 2xh^2h^3 - x^3}{h}$$

$$= \frac{x^3 + 3x^2h + 3xh^2 + hx^2 + 2xh^2h^3 - x^3}{h}$$
Let $h=0$

$$= 3x^2 + 3xh + h^2$$

$$= 3x^2 + 3x(0) + 0^2$$

$$= 3x^2$$

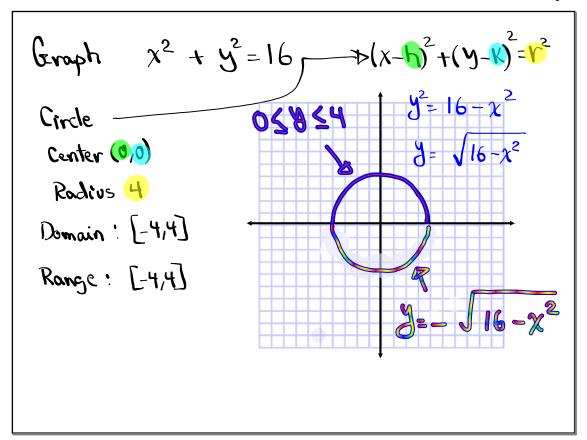
Graph
$$|x| - |y| = 4$$

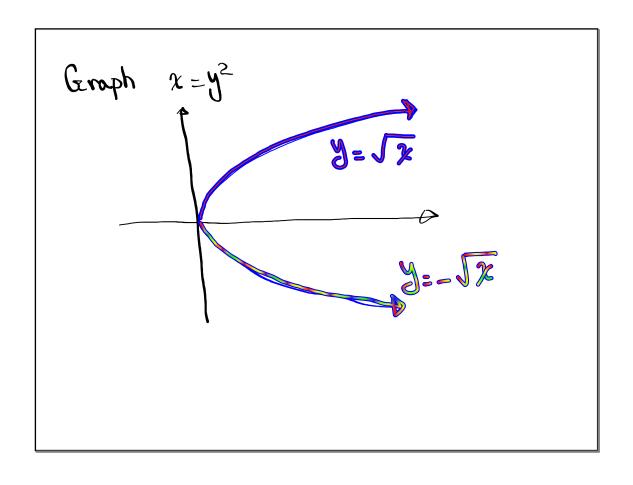
QI

 $x>0, y>0$
 $x-y=4$
 $|x|=x, |y|=y$
 $x=y=4$
 $x<0, y>0$
 $x=y=4$
 $x<0, y>0$
 $x=y=4$
 $x=y$

Simplisy
$$\frac{1}{1 + \tan x} - \sec^2 x - \frac{1}{\cot x} + \frac{1}{\cot x}$$

$$= \frac{1}{1 + 2\tan x} + \frac{1}{\tan x} - \sec^2 x - \frac{1}{\cot x}$$


$$= \frac{1}{1 + 2\tan x} + \frac{1}{1 + 2\tan x} - \frac{1}{1 + 2\tan x}$$


$$= \frac{1}{1 + 2\tan x} + \frac{1}{1 + 2\tan x}$$

$$= \frac{1}{1 + 2\tan x} + \frac{1}{1 + 2\tan x}$$

$$= \frac{1}{1 + 2\tan x} + \frac{1}{1 + 2\tan x}$$

$$= \frac{1}{1 + 2\tan x}$$

class QZ 1:

use quadratic formula to Solve $3x^2-5x+2=0$.

Final Ans in a Solution Set. $0x^2 + bx + C = 0$

$$0=3$$
 $6^2-40(-6)^2-4(3)(2)=25-24=1$

0=3
$$b^2 - 40Cz(-5)^2 - 4(3)(2) = 25 - 24 = 1$$

 $b=-5$
 $C=2$ $x = \frac{-b \pm \sqrt{b^2 - 40C}}{20} = \frac{-(-5) \pm \sqrt{1}}{2(3)} = \frac{5 \pm 1}{6}$

$$\chi = \frac{5H}{6} = \frac{6}{6} = 1$$

$$\chi = \frac{5-1}{6} = \frac{4}{6} = \frac{2}{3}$$

